BIAS CORRECTIONS IN TESTING AND ESTIMATING SEMIPARAMETRIC, SINGLE INDEX MODELS
Roger Klein () and
Chan Shen
Econometric Theory, 2010, vol. 26, issue 6, 1683-1718
Abstract:
Semiparametric methods are widely employed in applied work where the ability to conduct inferences is important. To establish asymptotic normality for making inferences, bias control mechanisms are often used in implementing semiparametric estimators. The first contribution of this paper is to propose a mechanism that enables us to establish asymptotic normality with regular kernels. In so doing, we argue that the resulting estimator performs very well in finite samples. Semiparametric models are commonly estimated under a single index assumption. Because the consistency of the estimator critically depends on this assumption being correct, our second objective is to develop a test for it. To ensure that the test statistic has good size and power properties in finite samples, we employ a bias control mechanism similar to that underlying the estimator. Furthermore, we structure the test so that its form adapts to the model under the alternative hypothesis. Monte Carlo results confirm that the bias control and the adaptive feature significantly improve the performance of the test statistic in finite samples.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:26:y:2010:i:06:p:1683-1718_99
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().