ASYMPTOTIC THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION OF THE MEMORY PARAMETER IN STATIONARY GAUSSIAN PROCESSES
Offer Lieberman,
Roy Rosemarin and
Judith Rousseau
Econometric Theory, 2012, vol. 28, issue 2, 457-470
Abstract:
Consistency, asymptotic normality, and efficiency of the maximum likelihood estimator for stationary Gaussian time series were shown to hold in the short memory case by Hannan (1973, Journal of Applied Probability 10, 130–145) and in the long memory case by Dahlhaus (1989, Annals of Statistics 34, 1045–1047). In this paper we extend these results to the entire stationarity region, including the case of antipersistence and noninvertibility.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:28:y:2012:i:02:p:457-470_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().