EconPapers    
Economics at your fingertips  
 

UNIT ROOTS IN WHITE NOISE

Alexei Onatski () and Harald Uhlig ()

Econometric Theory, 2012, vol. 28, issue 3, 485-508

Abstract: We show that the empirical distribution of the roots of the vector autoregression (VAR) of order p fitted to T observations of a general stationary or nonstationary process converges to the uniform distribution over the unit circle on the complex plane, when both T and p tend to infinity so that (ln T)/p → 0 and p3/T → 0. In particular, even if the process is a white noise, nearly all roots of the estimated VAR will converge by absolute value to unity. For fixed p, we derive an asymptotic approximation to the expected empirical distribution of the estimated roots as T → ∞. The approximation is concentrated in a circular region in the complex plane for various data generating processes and sample sizes.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
Working Paper: Unit Roots in White Noise (2009) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:28:y:2012:i:03:p:485-508_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:28:y:2012:i:03:p:485-508_00