Economics at your fingertips  


Alessandro De Gregorio and Stefano Iacus ()

Econometric Theory, 2012, vol. 28, issue 04, 838-860

Abstract: The least absolute shrinkage and selection operator (LASSO) is a widely used statistical methodology for simultaneous estimation and variable selection. It is a shrinkage estimation method that allows one to select parsimonious models. In other words, this method estimates the redundant parameters as zero in the large samples and reduces variance of estimates. In recent years, many authors analyzed this technique from a theoretical and applied point of view. We introduce and study the adaptive LASSO problem for discretely observed multivariate diffusion processes. We prove oracle properties and also derive the asymptotic distribution of the LASSO estimator. This is a nontrivial extension of previous results by Wang and Leng (2007, Journal of the American Statistical Association , 102(479), 1039–1048) on LASSO estimation because of different rates of convergence of the estimators in the drift and diffusion coefficients. We perform simulations and real data analysis to provide some evidence on the applicability of this method.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link) link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

Page updated 2019-08-02
Handle: RePEc:cup:etheor:v:28:y:2012:i:04:p:838-860_00