ADAPTIVE LASSO-TYPE ESTIMATION FOR MULTIVARIATE DIFFUSION PROCESSES
Alessandro De Gregorio and
Stefano Iacus ()
Econometric Theory, 2012, vol. 28, issue 4, 838-860
Abstract:
The least absolute shrinkage and selection operator (LASSO) is a widely used statistical methodology for simultaneous estimation and variable selection. It is a shrinkage estimation method that allows one to select parsimonious models. In other words, this method estimates the redundant parameters as zero in the large samples and reduces variance of estimates. In recent years, many authors analyzed this technique from a theoretical and applied point of view. We introduce and study the adaptive LASSO problem for discretely observed multivariate diffusion processes. We prove oracle properties and also derive the asymptotic distribution of the LASSO estimator. This is a nontrivial extension of previous results by Wang and Leng (2007, Journal of the American Statistical Association, 102(479), 1039–1048) on LASSO estimation because of different rates of convergence of the estimators in the drift and diffusion coefficients. We perform simulations and real data analysis to provide some evidence on the applicability of this method.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:28:y:2012:i:04:p:838-860_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().