TIME SERIES REGRESSION ON INTEGRATED CONTINUOUS-TIME PROCESSES WITH HEAVY AND LIGHT TAILS
Vicky Fasen
Econometric Theory, 2013, vol. 29, issue 1, 28-67
Abstract:
The paper presents a cointegration model in continuous time, where the linear combinations of the integrated processes are modeled by a multivariate Ornstein–Uhlenbeck process. The integrated processes are defined as vector-valued Lévy processes with an additional noise term. Hence, if we observe the process at discrete time points, we obtain a multiple regression model. As an estimator for the regression parameter we use the least squares estimator. We show that it is a consistent estimator and derive its asymptotic behavior. The limit distribution is a ratio of functionals of Brownian motions and stable Lévy processes, whose characteristic triplets have an explicit analytic representation. In particular, we present the Wald and the t-ratio statistic and simulate asymptotic confidence intervals. For the proofs we derive some central limit theorems for multivariate Ornstein–Uhlenbeck processes.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:29:y:2013:i:01:p:28-67_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().