EconPapers    
Economics at your fingertips  
 

SEMIPARAMETRIC STRUCTURAL MODELS OF BINARY RESPONSE: SHAPE RESTRICTIONS AND PARTIAL IDENTIFICATION

Andrew Chesher

Econometric Theory, 2013, vol. 29, issue 2, 231-266

Abstract: I study the partial identifying power of structural single-equation threshold-crossing models for binary responses when explanatory variables may be endogenous. The sharp identified set of threshold functions is derived for the case in which explanatory variables are discrete, and I provide a constructive proof of sharpness. There is special attention to a widely employed semiparametric shape restriction, which requires the threshold-crossing function to be a monotone function of a linear index involving the observable explanatory variables. The restriction brings great computational benefits, allowing calculation of the identified set of index coefficients without calculating the nonparametrically specified threshold function. With the restriction in place, the methods of the paper can be applied to produce identified sets in a class of binary response models with mismeasured explanatory variables.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
Working Paper: Semiparametric structural models of binary response: shape restrictions and partial identification (2011) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:29:y:2013:i:02:p:231-266_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:29:y:2013:i:02:p:231-266_00