EconPapers    
Economics at your fingertips  
 

ESTIMATION OF BINARY CHOICE MODELS WITH LINEAR INDEX AND DUMMY ENDOGENOUS VARIABLES

Neşe Yildiz

Econometric Theory, 2013, vol. 29, issue 2, 354-392

Abstract: This paper presents computationally simple estimators for the index coefficients in a binary choice model with a binary endogenous regressor without relying on distributional assumptions or on large support conditions and yields root-n consistent and asymptotically normal estimators. We develop a multistep method for estimating the parameters in a triangular, linear index, threshold-crossing model with two equations. Such an econometric model might be used in testing for moral hazard while allowing for asymmetric information in insurance markets. In outlining this new estimation method two contributions are made. The first one is proposing a novel “matching” estimator for the coefficient on the binary endogenous variable in the outcome equation. Second, in order to establish the asymptotic properties of the proposed estimators for the coefficients of the exogenous regressors in the outcome equation, the results of Powell, Stock, and Stoker (1989, Econometrica 75, 1403–1430) are extended to cover the case where the average derivative estimation requires a first-step semiparametric procedure.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:29:y:2013:i:02:p:354-392_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:29:y:2013:i:02:p:354-392_00