FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA
Minjing Tao,
Yazhen Wang and
Xiaohong Chen ()
Econometric Theory, 2013, vol. 29, issue 4, 838-856
Abstract:
Financial practices often need to estimate an integrated volatility matrix of a large number of assets using noisy high-frequency data. Many existing estimators of a volatility matrix of small dimensions become inconsistent when the size of the matrix is close to or larger than the sample size. This paper introduces a new type of large volatility matrix estimator based on nonsynchronized high-frequency data, allowing for the presence of microstructure noise. When both the number of assets and the sample size go to infinity, we show that our new estimator is consistent and achieves a fast convergence rate, where the rate is optimal with respect to the sample size. A simulation study is conducted to check the finite sample performance of the proposed estimator.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:29:y:2013:i:04:p:838-856_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().