GENERALIZED ADDITIVE PARTIAL LINEAR MODELS WITH HIGH-DIMENSIONAL COVARIATES
Heng Lian and
Hua Liang
Econometric Theory, 2013, vol. 29, issue 6, 1136-1161
Abstract:
This paper studies generalized additive partial linear models with high-dimensional covariates. We are interested in which components (including parametric and nonparametric components) are nonzero. The additive nonparametric functions are approximated by polynomial splines. We propose a doubly penalized procedure to obtain an initial estimate and then use the adaptive least absolute shrinkage and selection operator to identify nonzero components and to obtain the final selection and estimation results. We establish selection and estimation consistency of the estimator in addition to asymptotic normality for the estimator of the parametric components by employing a penalized quasi-likelihood. Thus our estimator is shown to have an asymptotic oracle property. Monte Carlo simulations show that the proposed procedure works well with moderate sample sizes.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:29:y:2013:i:06:p:1136-1161_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().