MARTINGALE LIMIT THEOREM REVISITED AND NONLINEAR COINTEGRATING REGRESSION
Qiying Wang ()
Econometric Theory, 2014, vol. 30, issue 3, 509-535
Abstract:
For a certain class of martingales, convergence to a mixture of normal distributions is established under convergence in distribution for the conditional variance. This is less restrictive in comparison with the classical martingale limit theorem, where one generally requires convergence in probability. The extension partially removes a barrier in the applications of the classical martingale limit theorem to nonparametric estimation and inference with nonstationarity and enhances the effectiveness of the classical martingale limit theorem as one of the main tools to investigate asymptotics in statistics, econometrics, and other fields. The main result is applied to investigate limit behavior of the conventional kernel estimator in a nonlinear cointegrating regression model, which improves existing works in the literature.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:30:y:2014:i:03:p:509-535_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().