CONSISTENCY AND ASYMPTOTIC NORMALITY OF SIEVE ML ESTIMATORS UNDER LOW-LEVEL CONDITIONS
Herman Bierens ()
Econometric Theory, 2014, vol. 30, issue 5, 1021-1076
Abstract:
This paper considers sieve maximum likelihood estimation of seminonparametric (SNP) models with an unknown density function as non-Euclidean parameter, next to a finite-dimensional parameter vector. The density function involved is modeled via an infinite series expansion, so that the actual parameter space is infinite-dimensional. It will be shown that under low-level conditions the sieve estimators of these parameters are consistent, and the estimators of the Euclidean parameters are $\sqrt N$ asymptotically normal, given a random sample of size N. The latter result is derived in a different way than in the sieve estimation literature. It appears that this asymptotic normality result is in essence the same as for the finite dimensional case. This approach is motivated and illustrated by an SNP discrete choice model.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:30:y:2014:i:05:p:1021-1076_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().