EFFICIENCY IN LARGE DYNAMIC PANEL MODELS WITH COMMON FACTORS
Patrick Gagliardini () and
Christian Gourieroux
Econometric Theory, 2014, vol. 30, issue 5, 961-1020
Abstract:
This paper deals with asymptotically efficient estimation in exchangeable nonlinear dynamic panel models with common unobservable factors. These models are relevant for applications to large portfolios of credits, corporate bonds, or life insurance contracts. For instance, the Asymptotic Risk Factor (ARF) model is recommended in the current regulation in Finance (Basel II and Basel III) and Insurance (Solvency II) for risk prediction and computation of the required capital. The specification accounts for both micro- and macrodynamics, induced by the lagged individual observations and the common stochastic factors, respectively. For large cross-sectional and time dimensions n and T, we derive the efficiency bound and introduce computationally simple efficient estimators for both the micro- and macroparameters. The results are based on an asymptotic expansion of the log-likelihood function in powers of 1/n, and are linked to granularity theory. The results are illustrated with the stochastic migration model for credit risk analysis.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Efficiency in Large Dynamic Panel Models with Common Factor (2010) 
Working Paper: Efficiency in Large Dynamic Panel Models with Common Factor (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:30:y:2014:i:05:p:961-1020_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().