GENERAL INEQUALITIES FOR GIBBS POSTERIOR WITH NONADDITIVE EMPIRICAL RISK
Cheng Li,
Wenxin Jiang and
Martin A. Tanner
Econometric Theory, 2014, vol. 30, issue 6, 1247-1271
Abstract:
The Gibbs posterior is a useful tool for risk minimization, which adopts a Bayesian framework and can incorporate convenient computational algorithms such as Markov chain Monte Carlo. We derive risk bounds for the Gibbs posterior using some general nonasymptotic inequalities, which can be used to derive nearly optimal convergence rates and select models to optimally balance the approximation errors and the stochastic errors. These inequalities are formulated in a very general way that does not require the empirical risk to be a usual sample average over independent observations. We apply this framework to study the convergence rate of the GMM (generalized method of moments) risk and derive an oracle inequality for the ranking risk, where models are selected based on the Gibbs posterior with a nonadditive empirical risk.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:30:y:2014:i:06:p:1247-1271_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().