ASYMPTOTIC INFERENCE FOR AR MODELS WITH HEAVY-TAILED G-GARCH NOISES
Rongmao Zhang and
Shiqing Ling
Econometric Theory, 2015, vol. 31, issue 4, 880-890
Abstract:
It is well known that the least squares estimator (LSE) of an AR(p) model with i.i.d. (independent and identically distributed) noises is n1/αL(n)-consistent when the tail index α of the noise is within (0,2) and is n1/2-consistent when α ≥ 2, where L(n) is a slowly varying function. When the noises are not i.i.d., however, the case is far from clear. This paper studies the LSE of AR(p) models with heavy-tailed G-GARCH(1,1) noises. When the tail index α of G-GARCH is within (0,2), it is shown that the LSE is not a consistent estimator of the parameters, but converges to a ratio of stable vectors. When α ε [2,4], it is shown that the LSE is n1–2/α-consistent if α ε (2,4), logn-consistent if α = 2, and n1/2 / logn-consistent if α = 4, and its limiting distribution is a functional of stable processes. Our results are significantly different from those with i.i.d. noises and should warn practitioners in economics and finance of the implications, including inconsistency, of heavy-tailed errors in the presence of conditional heterogeneity.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:31:y:2015:i:04:p:880-890_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().