TESTING INSTABILITY IN A PREDICTIVE REGRESSION MODEL WITH NONSTATIONARY REGRESSORS
Zongwu Cai,
Yunfei Wang and
Yonggang Wang
Econometric Theory, 2015, vol. 31, issue 5, 953-980
Abstract:
It is well known that allowing the coefficients to be time-varying in a predictive model with possibly nonstationary regressors can help to deal with instability in predictability associated with linear predictive models. In this paper, an L2-type test statistic is proposed to test the stability of the coefficient vector, and the asymptotic distributions of the proposed test statistic are developed under both null and alternative hypotheses. A Monte Carlo experiment is conducted to evaluate the finite sample performance of the proposed test statistic and an empirical example is examined to demonstrate the practical application of the proposed testing method.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:31:y:2015:i:05:p:953-980_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().