DIFFERENCING TRANSFORMATIONS AND INFERENCE IN PREDICTIVE REGRESSION MODELS
Lorenzo Camponovo
Econometric Theory, 2015, vol. 31, issue 6, 1331-1358
Abstract:
The limit distribution of conventional test statistics for predictability may depend on the degree of persistence of the predictors. Therefore, diverging results and conclusions may arise because of the different asymptotic theories adopted. Using differencing transformations, we introduce a new class of estimators and test statistics for predictive regression models with Gaussian limit distribution that is instead insensitive to the degree of persistence of the predictors. This desirable feature allows to construct Gaussian confidence intervals for the parameter of interest in stationary, nonstationary, and even locally explosive settings. Besides the limit distribution, we also study the efficiency and the rate of convergence of our new class of estimators. We show that the rate of convergence is $\sqrt n $ in stationary cases, while it can be arbitrarily close to n in nonstationary settings, still preserving the Gaussian limit distribution. Monte Carlo simulations confirm the high reliability and accuracy of our test statistics.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:31:y:2015:i:06:p:1331-1358_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().