EconPapers    
Economics at your fingertips  
 

A NONPARAMETRIC ESTIMATOR FOR THE COVARIANCE FUNCTION OF FUNCTIONAL DATA

Alessio Sancetta

Econometric Theory, 2015, vol. 31, issue 6, 1359-1381

Abstract: Many quantities of interest in economics and finance can be represented as partially observed functional data. Examples include structural business cycle estimation, implied volatility smile, the yield curve. Having embedded these quantities into continuous random curves, estimation of the covariance function is needed to extract factors, perform dimensionality reduction, and conduct inference on the factor scores. A series expansion for the covariance function is considered. Under summability restrictions on the absolute values of the coefficients in the series expansion, an estimation procedure that is resilient to overfitting is proposed. Under certain conditions, the rate of consistency for the resulting estimator achieves the minimax rate, allowing the observations to be weakly dependent. When the domain of the functional data is K(>1) dimensional, the absolute summability restriction of the coefficients avoids the so called curse of dimensionality. As an application, a Box–Pierce statistic to test independence of partially observed functional data is derived. Simulation results and an empirical investigation of the efficiency of the Eurodollar futures contracts on the Chicago Mercantile Exchange are included.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:31:y:2015:i:06:p:1359-1381_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:31:y:2015:i:06:p:1359-1381_00