EconPapers    
Economics at your fingertips  
 

SIGNAL EXTRACTION IN LONG MEMORY STOCHASTIC VOLATILITY

Josu Arteche

Econometric Theory, 2015, vol. 31, issue 6, 1382-1402

Abstract: Long memory in stochastic volatility (LMSV) models are flexible tools for the modeling of persistent dynamic volatility, which is a typical characteristic of financial time series. However, their empirical applicability is limited because of the complications inherent in the estimation of the model and in the extraction of the volatility component. This paper proposes a new technique for volatility extraction, based on a semiparametric version of the optimal Wiener–Kolmogorov filter in the frequency domain. Its main characteristics are its simplicity and generality, because no parametric specification is needed for the volatility component and it remains valid for both stationary and nonstationary signals. The applicability of the proposal is shown in a Monte Carlo and in a daily series of returns from the Dow Jones Industrial index.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:31:y:2015:i:06:p:1382-1402_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

 
Page updated 2020-10-08
Handle: RePEc:cup:etheor:v:31:y:2015:i:06:p:1382-1402_00