EconPapers    
Economics at your fingertips  
 

MODEL-FREE INFERENCE FOR TAIL RISK MEASURES

Ke-Li Xu

Econometric Theory, 2016, vol. 32, issue 1, 122-153

Abstract: Understanding uncertainty in estimating risk measures is important in modern financial risk management. In this paper we consider a nonparametric framework that incorporates auxiliary information available in covariates and propose a family of inferential methods for the value at risk, expected shortfall, and related risk measures. A two-step generalized empirical likelihood test statistic is constructed and is shown to be asymptotically pivotal without requiring variance estimation. We also show its validity when applied to a semiparametric index model. Asymptotic theories are established allowing for serially dependent data. Simulations and an empirical application to Canadian stock return index illustrate the finite sample behavior of the methodologies proposed.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:32:y:2016:i:01:p:122-153_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:32:y:2016:i:01:p:122-153_00