SEMIPARAMETRIC ESTIMATION OF PARTIALLY LINEAR TRANSFORMATION MODELS UNDER CONDITIONAL QUANTILE RESTRICTION
Zhengyu Zhang
Econometric Theory, 2016, vol. 32, issue 2, 458-497
Abstract:
This article is concerned with semiparametric estimation of a partially linear transformation model under conditional quantile restriction with no parametric restriction imposed either on the link functional form or on the error term distribution. We describe for the finite-dimensional parameter a $\sqrt n$-consistent estimator which combines the features of Chen (2010)’s maximum integrated score estimator as well as Lee (2003)’s average quantile regression. We show the remaining two infinite-dimensional unknown functions in the model can be separately identified and propose estimators for these functions based on the marginal integration method. Furthermore, a simple approach is proposed to estimate the average partial quantile effect. Two important extensions, i.e., random censoring as well as estimating a transformation model with an endogenous regressor are also considered.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:32:y:2016:i:02:p:458-497_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().