DETECTING FOR SMOOTH STRUCTURAL CHANGES IN GARCH MODELS
Bin Chen and
Yongmiao Hong
Econometric Theory, 2016, vol. 32, issue 3, 740-791
Abstract:
Detecting and modeling structural changes in GARCH processes have attracted increasing attention in time series econometrics. In this paper, we propose a new approach to testing structural changes in GARCH models. The idea is to compare the log likelihood of a time-varying parameter GARCH model with that of a constant parameter GARCH model, where the time-varying GARCH parameters are estimated by a local quasi-maximum likelihood estimator (QMLE) and the constant GARCH parameters are estimated by a standard QMLE. The test does not require any prior information about the alternatives of structural changes. It has an asymptotic N(0,1) distribution under the null hypothesis of parameter constancy and is consistent against a vast class of smooth structural changes as well as abrupt structural breaks with possibly unknown break points. A consistent parametric bootstrap is employed to provide a reliable inference in finite samples and a simulation study highlights the merits of our test.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:32:y:2016:i:03:p:740-791_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().