EconPapers    
Economics at your fingertips  
 

SPLINE ESTIMATION OF A SEMIPARAMETRIC GARCH MODEL

Rong Liu and Lijian Yang

Econometric Theory, 2016, vol. 32, issue 4, 1023-1054

Abstract: The semiparametric GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) model of Yang (2006, Journal of Econometrics 130, 365–384) has combined the flexibility of a nonparametric link function with the dependence on infinitely many past observations of the classic GARCH model. We propose a cubic spline procedure to estimate the unknown quantities in the semiparametric GARCH model that is intuitively appealing due to its simplicity. The theoretical properties of the procedure are the same as the kernel procedure, while simulated and real data examples show that the numerical performance is either better than or comparable to the kernel method. The new method is computationally much more efficient than the kernel method and very useful for analyzing large financial time series data.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:32:y:2016:i:04:p:1023-1054_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:32:y:2016:i:04:p:1023-1054_00