IDENTIFICATION AND INFERENCE ON REGRESSIONS WITH MISSING COVARIATE DATA
Esteban Aucejo,
Federico Bugni and
V. Joseph Hotz
Econometric Theory, 2017, vol. 33, issue 1, 196-241
Abstract:
This paper examines the problem of identification and inference on a conditional moment condition model with missing data, with special focus on the case when the conditioning covariates are missing. We impose no assumption on the distribution of the missing data and we confront the missing data problem by using a worst case scenario approach.We characterize the sharp identified set and argue that this set is usually too complex to compute or to use for inference. Given this difficulty, we consider the construction of outer identified sets (i.e. supersets of the identified set) that are easier to compute and can still characterize the parameter of interest. Two different outer identification strategies are proposed. Both of these strategies are shown to have nontrivial identifying power and are relatively easy to use and combine for inferential purposes.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Identification and inference on regressions with missing covariate data (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:33:y:2017:i:01:p:196-241_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().