EFFICIENT ESTIMATION USING THE CHARACTERISTIC FUNCTION
Marine Carrasco and
Rachidi Kotchoni
Econometric Theory, 2017, vol. 33, issue 2, 479-526
Abstract:
The method of moments procedure proposed by Carrasco and Florens (2000) permits full exploitation of the information contained in the characteristic function and yields an estimator which is asymptotically as efficient as the maximum likelihood estimator. However, this estimation procedure depends on a regularization or tuning parameter α that needs to be selected. The aim of the present paper is to provide a way to optimally choose α by minimizing the approximate mean square error (AMSE) of the estimator. Following an approach similar to that of Donald and Newey (2001), we derive a higher-order expansion of the estimator from which we characterize the finite sample dependence of the AMSE on α. We propose to select the regularization parameter by minimizing an estimate of the AMSE. We show that this procedure delivers a consistent estimator of α. Moreover, the data-driven selection of the regularization parameter preserves the consistency, asymptotic normality, and efficiency of the CGMM estimator. Simulation experiments based on a CIR model show the relevance of the proposed approach.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Efficient Estimation Using the Characteristic Function (2017)
Working Paper: Efficient estimation using the Characteristic Function (2013) 
Working Paper: Efficient Estimation Using the Characteristic Function (2013) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:33:y:2017:i:02:p:479-526_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().