EconPapers    
Economics at your fingertips  
 

BIAS CORRECTION OF SEMIPARAMETRIC LONG MEMORY PARAMETER ESTIMATORS VIA THE PREFILTERED SIEVE BOOTSTRAP

Donald Poskitt, Gael M. Martin and Simone D. Grose

Econometric Theory, 2017, vol. 33, issue 3, 578-609

Abstract: This paper investigates bootstrap-based bias correction of semiparametric estimators of the long memory parameter, d, in fractionally integrated processes. The re-sampling method involves the application of the sieve bootstrap to data prefiltered by a preliminary semiparametric estimate of the long memory parameter. Theoretical justification for using the bootstrap technique to bias adjust log periodogram and semiparametric local Whittle estimators of the memory parameter is provided in the case where the true value of d lies in the range 0 ≤ d

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:33:y:2017:i:03:p:578-609_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:33:y:2017:i:03:p:578-609_00