INFERENCE ON TWO-COMPONENT MIXTURES UNDER TAIL RESTRICTIONS
Koen Jochmans,
Marc Henry and
Bernard Salanié
Econometric Theory, 2017, vol. 33, issue 3, 610-635
Abstract:
Many econometric models can be analyzed as finite mixtures. We focus on two-component mixtures, and we show that they are nonparametrically point identified by a combination of an exclusion restriction and tail restrictions. Our identification analysis suggests simple closed-form estimators of the component distributions and mixing proportions, as well as a specification test. We derive their asymptotic properties using results on tail empirical processes and we present a simulation study that documents their finite-sample performance.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Inference on two component mixtures under tail restrictions (2021) 
Working Paper: Inference on Two-Component Mixtures under Tail Restrictions (2017)
Working Paper: Inference on Two-Component Mixtures under Tail Restrictions (2017)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:33:y:2017:i:03:p:610-635_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().