UNIFORM CONVERGENCE RATES OF KERNEL-BASED NONPARAMETRIC ESTIMATORS FOR CONTINUOUS TIME DIFFUSION PROCESSES: A DAMPING FUNCTION APPROACH
Shin Kanaya
Econometric Theory, 2017, vol. 33, issue 4, 874-914
Abstract:
In this paper, we derive uniform convergence rates of nonparametric estimators for continuous time diffusion processes. In particular, we consider kernel-based estimators of the Nadaraya–Watson type, introducing a new technical device called a damping function. This device allows us to derive sharp uniform rates over an infinite interval with minimal requirements on the processes: The existence of the moment of any order is not required and the boundedness of relevant functions can be significantly relaxed. Restrictions on kernel functions are also minimal: We allow for kernels with discontinuity, unbounded support, and slowly decaying tails. Our proofs proceed by using the covering-number technique from empirical process theory and exploiting the mixing and martingale properties of the processes. We also present new results on the path-continuity property of Brownian motions and diffusion processes over an infinite time horizon. These path-continuity results, which should also be of some independent interest, are used to control discretization biases of the nonparametric estimators. The obtained convergence results are useful for non/semiparametric estimation and testing problems of diffusion processes.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Uniform Convergence Rates of Kernel-Based Nonparametric Estimators for Continuous Time Diffusion Processes: A Damping Function Approach (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:33:y:2017:i:04:p:874-914_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().