COMPLEMENTARITY AND IDENTIFICATION
Tate Twinam
Econometric Theory, 2017, vol. 33, issue 5, 1154-1185
Abstract:
This paper examines the identification power of assumptions that formalize the notion of complementarity in the context of a nonparametric bounds analysis of treatment response. I extend the literature on partial identification via shape restrictions by exploiting cross-dimensional restrictions on treatment response when treatments are multidimensional; the assumption of supermodularity can strengthen bounds on average treatment effects in studies of policy complementarity. This restriction can be combined with a statistical independence assumption to derive improved bounds on treatment effect distributions, aiding in the evaluation of complex randomized controlled trials. Complementarities arising from treatment effect heterogeneity can be incorporated through supermodular instrumental variables to strengthen identification in studies with one or multiple treatments. An application examining the long-run impact of zoning on the evolution of urban spatial structure illustrates the value of the proposed identification methods.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:33:y:2017:i:05:p:1154-1185_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().