EconPapers    
Economics at your fingertips  
 

TESTING FOR CHANGES IN KENDALL’S TAU

Herold Dehling, Daniel Vogel, Martin Wendler and Dominik Wied

Econometric Theory, 2017, vol. 33, issue 6, 1352-1386

Abstract: For a bivariate time series ((Xi ,Yi))i=1,...,n, we want to detect whether the correlation between Xi and Yi stays constant for all i = 1,...n. We propose a nonparametric change-point test statistic based on Kendall’s tau. The asymptotic distribution under the null hypothesis of no change follows from a new U-statistic invariance principle for dependent processes. Assuming a single change-point, we show that the location of the change-point is consistently estimated. Kendall’s tau possesses a high efficiency at the normal distribution, as compared to the normal maximum likelihood estimator, Pearson’s moment correlation. Contrary to Pearson’s correlation coefficient, it shows no loss in efficiency at heavy-tailed distributions, and is therefore particularly suited for financial data, where heavy tails are common. We assume the data ((Xi ,Yi))i=1,...,n to be stationary and P-near epoch dependent on an absolutely regular process. The P-near epoch dependence condition constitutes a generalization of the usually considered Lp-near epoch dependence allowing for arbitrarily heavy-tailed data. We investigate the test numerically, compare it to previous proposals, and illustrate its application with two real-life data examples.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:33:y:2017:i:06:p:1352-1386_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:33:y:2017:i:06:p:1352-1386_00