UNIFORM CONVERGENCE RATES OVER MAXIMAL DOMAINS IN STRUCTURAL NONPARAMETRIC COINTEGRATING REGRESSION
James A. Duffy
Econometric Theory, 2017, vol. 33, issue 6, 1387-1417
Abstract:
This paper presents uniform convergence rates for kernel regression estimators, in the setting of a structural nonlinear cointegrating regression model. We generalise the existing literature in three ways. First, the domain to which these rates apply is much wider than the domains that have been considered in the existing literature, and can be chosen so as to contain as large a fraction of the sample as desired in the limit. Second, our results allow the regression disturbance to be serially correlated, and cross-correlated with the regressor; previous work on this problem (of obtaining uniform rates) having been confined entirely to the setting of an exogenous regressor. Third, we permit the bandwidth to be data-dependent, requiring it to satisfy only certain weak asymptotic shrinkage conditions. Our assumptions on the regressor process are consistent with a very broad range of departures from the standard unit root autoregressive model, allowing the regressor to be fractionally integrated, and to have an infinite variance (and even infinite lower-order moments).
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:33:y:2017:i:06:p:1387-1417_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().