IDENTIFICATION OF JOINT DISTRIBUTIONS IN DEPENDENT FACTOR MODELS
Dan Ben-Moshe
Econometric Theory, 2018, vol. 34, issue 1, 134-165
Abstract:
This paper studies linear factor models that have arbitrarily dependent factors. Assuming that the coefficients are known and that their matrix representation satisfies rank conditions, we identify the nonparametric joint distribution of the unobserved factors using first and then second-order partial derivatives of the log characteristic function of the observed variables. In conjunction with these identification strategies the mean and variance of the vector of factors are identified. The main result provides necessary and sufficient conditions for identification of the joint distribution of the factors. In an illustrative example, we show identification of an earnings dynamics model with a subset of arbitrarily dependent income shocks. Closed-form formulas lead to estimators that converge uniformly and despite being based on inverse Fourier transforms have tight confidence bands around their theoretical counterparts in Monte Carlo simulations.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:34:y:2018:i:01:p:134-165_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().