MULTIMODALITY p**-FORMULA AND CONFIDENCE REGIONS
Kees Jan van Garderen and
Fallaw Sowell
Econometric Theory, 2018, vol. 34, issue 2, 416-446
Abstract:
Barndorff-Nielsen’s celebrated p*-formula and variations thereof have amongst their various attractions the ability to approximate bimodal distributions. In this paper we show that in general this requires a crucial adjustment to the basic formula. The adjustment is based on a simple idea and straightforward to implement, yet delivers important improvements. It is based on recognizing that certain outcomes are theoretically impossible and the density of the MLE should then equal zero, rather than the positive density that a straight application of p* would suggest. This has implications for inference and we show how to use the new p**-formula to construct improved confidence regions. These can be disjoint as a consequence of the bimodality. The degree of bimodality depends heavily on the value of an approximate ancillary statistic and conditioning on the observed value of this statistic is therefore desirable. The p**-formula naturally delivers the relevant conditional distribution. We illustrate these results in small and large samples using a simple nonlinear regression model and errors in variables model where the measurement errors in dependent and explanatory variables are correlated and allow for weak proxies.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:34:y:2018:i:02:p:416-446_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().