ON NONPARAMETRIC INFERENCE IN THE REGRESSION DISCONTINUITY DESIGN
Vishal Kamat
Econometric Theory, 2018, vol. 34, issue 3, 694-703
Abstract:
This paper studies the validity of nonparametric tests used in the regression discontinuity design. The null hypothesis of interest is that the average treatment effect at the threshold in the so-called sharp design equals a pre-specified value. We first show that, under assumptions used in the majority of the literature, for any test the power against any alternative is bounded above by its size. This result implies that, under these assumptions, any test with nontrivial power will exhibit size distortions. We next provide a sufficient strengthening of the standard assumptions under which we show that a version of a test suggested in Calonico, Cattaneo, and Titiunik (2014) can control limiting size.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:34:y:2018:i:03:p:694-703_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().