ON THE FUNCTIONAL ESTIMATION OF MULTIVARIATE DIFFUSION PROCESSES
Federico M. Bandi and
Guillermo Moloche
Econometric Theory, 2018, vol. 34, issue 4, 896-946
Abstract:
We propose a nonparametric estimation theory for the occupation density, the drift vector, and the diffusion matrix of multivariate diffusion processes. The estimators are sample analogues to infinitesimal conditional expectations constructed as Nadaraya-Watson kernel averages. Mild assumptions are imposed on the statistical properties of the multivariate system to obtain limiting results. Harris recurrence is all that we require to show consistency and asymptotic (mixed) normality of the proposed functional estimators. The identification method and asymptotic theory apply to both stationary and nonstationary multivariate diffusion processes of the recurrent type.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: On the functional estimation of multivariate diffusion processes (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:34:y:2018:i:04:p:896-946_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().