WEAK CONVERGENCE TO STOCHASTIC INTEGRALS UNDER PRIMITIVE CONDITIONS IN NONLINEAR ECONOMETRIC MODELS
Jiangyan Peng and
Qiying Wang
Econometric Theory, 2018, vol. 34, issue 5, 1132-1157
Abstract:
Limit theory with stochastic integrals plays a major role in time series econometrics. In earlier contributions on weak convergence to stochastic integrals, the literature commonly uses martingale and semi-martingale structures. Liang, Phillips, Wang, and Wang (2016) (see also Wang (2015), Chap. 4.5) currently extended weak convergence to stochastic integrals by allowing for a linear process or a α-mixing sequence in innovations. While these martingale, linear process and α-mixing structures have wide relevance, they are not sufficiently general to cover many econometric applications that have endogeneity and nonlinearity. This paper provides new conditions for weak convergence to stochastic integrals. Our frameworks allow for long memory processes, causal processes, and near-epoch dependence in innovations, which have applications in a wide range of econometric areas such as TAR, bilinear, and other nonlinear models.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:34:y:2018:i:05:p:1132-1157_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().