RENORMING VOLATILITIES IN A FAMILY OF GARCH MODELS
Dong Li and
Wuqing Wu
Econometric Theory, 2018, vol. 34, issue 6, 1370-1382
Abstract:
This paper studies the weak convergence of renorming volatilities in a family of GARCH(1,1) models from a functional point of view. After suitable renormalization, it is shown that the limiting distribution is a geometric Brownian motion when the associated top Lyapunov exponent γ > 0 and is an exponential functional of the maximum process of a Brownian motion when γ = 0. This indicates that the volatility of the GARCH(1,1)-type model has a completely different random structure according to the sign of γ. The obtained results further strengthen our understanding of volatilities in GARCH-type models. Simulation studies are carried out to assess our findings.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:34:y:2018:i:06:p:1370-1382_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().