BLOCK BOOTSTRAP CONSISTENCY UNDER WEAK ASSUMPTIONS
Gray Calhoun
Econometric Theory, 2018, vol. 34, issue 6, 1383-1406
Abstract:
This paper weakens the size and moment conditions needed for typical block bootstrap methods (i.e., the moving blocks, circular blocks, and stationary bootstraps) to be valid for the sample mean of Near-Epoch-Dependent (NED) functions of mixing processes; they are consistent under the weakest conditions that ensure the original NED process obeys a central limit theorem (CLT), established by De Jong (1997, Econometric Theory 13(3), 353–367). In doing so, this paper extends De Jong’s method of proof, a blocking argument, to hold with random and unequal block lengths. This paper also proves that bootstrapped partial sums satisfy a functional CLT (FCLT) under the same conditions.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:34:y:2018:i:06:p:1383-1406_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().