Economics at your fingertips  


Abhimanyu Gupta ()

Econometric Theory, 2019, vol. 35, issue 2, 417-463

Abstract: We examine a higher-order spatial autoregressive model with stochastic, but exogenous, spatial weight matrices. Allowing a general spatial linear process form for the disturbances that permits many common types of error specifications as well as potential ‘long memory’, we provide sufficient conditions for consistency and asymptotic normality of instrumental variables, ordinary least squares, and pseudo maximum likelihood estimates. The implications of popular weight matrix normalizations and structures for our theoretical conditions are discussed. A set of Monte Carlo simulations examines the behaviour of the estimates in a variety of situations. Our results are especially pertinent in situations where spatial weights are functions of stochastic economic variables, and this type of setting is also studied in our simulations.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link) ... type/journal_article link to article abstract page (text/html)

Related works:
Working Paper: Estimation of Spatial Autoregressions with Stochastic Weight Matrices (2015) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

Page updated 2020-09-19
Handle: RePEc:cup:etheor:v:35:y:2019:i:02:p:417-463_00