BOUNDEDNESS OF M-ESTIMATORS FOR LINEAR REGRESSION IN TIME SERIES
Soren Johansen and
Bent Nielsen
Econometric Theory, 2019, vol. 35, issue 3, 653-683
Abstract:
We show boundedness in probability uniformly in sample size of a general M-estimator for multiple linear regression in time series. The positive criterion function for the M-estimator is assumed lower semicontinuous and sufficiently large for large argument. Particular cases are the Huber-skip and quantile regression. Boundedness requires an assumption on the frequency of small regressors. We show that this is satisfied for a variety of deterministic and stochastic regressors, including stationary and random walks regressors. The results are obtained using a detailed analysis of the condition on the regressors combined with some recent martingale results.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:35:y:2019:i:03:p:653-683_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().