NONPARAMETRIC DENSITY ESTIMATION BY B-SPLINE DUALITY
Zhenyu Cui,
Justin Lars Kirkby and
Duy Nguyen
Econometric Theory, 2020, vol. 36, issue 2, 250-291
Abstract:
In this article, we propose a new nonparametric density estimator derived from the theory of frames and Riesz bases. In particular, we propose the so-called bi-orthogonal density estimator based on the class of B-splines and derive its theoretical properties, including the asymptotically optimal choice of bandwidth. Detailed theoretical analysis and comparisons of our estimator with existing local basis and kernel density estimators are presented. The estimator is particularly well suited for high-frequency data analysis in financial and economic markets.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:36:y:2020:i:2:p:250-291_3
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().