EconPapers    
Economics at your fingertips  
 

NONPARAMETRIC IDENTIFICATION OF THE MIXED HAZARD MODEL USING MARTINGALE-BASED MOMENTS

Johannes Ruf and James Lewis Wolter

Econometric Theory, 2020, vol. 36, issue 2, 331-346

Abstract: Nonparametric identification of the Mixed Hazard model is shown. The setup allows for covariates that are random, time-varying, satisfy a rich path structure and are censored by events. For each set of model parameters, an observed process is constructed. The process corresponding to the true model parameters is a martingale, the ones corresponding to incorrect model parameters are not. The unique martingale structure yields a family of moment conditions that only the true parameters can satisfy. These moments identify the model and suggest a GMM estimation approach. The moments do not require use of the hazard function.

Date: 2020
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:36:y:2020:i:2:p:331-346_5

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

 
Page updated 2020-03-20
Handle: RePEc:cup:etheor:v:36:y:2020:i:2:p:331-346_5