A NEW MULTILEVEL MODELING APPROACH FOR CLUSTERED SURVIVAL DATA
Jinfeng Xu,
Mu Yue and
Wenyang Zhang
Econometric Theory, 2020, vol. 36, issue 4, 707-750
Abstract:
In multilevel modeling of clustered survival data, to account for the differences among different clusters, a commonly used approach is to introduce cluster effects, either random or fixed, into the model. Modeling with random effects may lead to difficulties in the implementation of the estimation procedure for the unknown parameters of interest because the numerical computation of multiple integrals may become unavoidable when the cluster effects are not scalars. On the other hand, if fixed effects are used, there is a danger of having estimators with large variances because there are too many nuisance parameters involved in the model. In this article, using the idea of the homogeneity pursuit, we propose a new multilevel modeling approach for clustered survival data. The proposed modeling approach does not have the potential computational problem as modeling with random effects, and it also involves far fewer unknown parameters than modeling with fixed effects. We also establish asymptotic properties to show the advantages of the proposed model and conduct intensive simulation studies to demonstrate the performance of the proposed method. Finally, the proposed method is applied to analyze a dataset on the second-birth interval in Bangladesh. The most interesting finding is the impact of some important factors on the length of the second-birth interval variation over clusters and its homogeneous structure.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:36:y:2020:i:4:p:707-750_5
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().