OPTIMAL MULTISTEP VAR FORECAST AVERAGING
Jen-Che Liao and
Wen-Jen Tsay
Econometric Theory, 2020, vol. 36, issue 6, 1099-1126
Abstract:
This article proposes frequentist multiple-equation least-squares averaging approaches for multistep forecasting with vector autoregressive (VAR) models. The proposed VAR forecast averaging methods are based on the multivariate Mallows model averaging (MMMA) and multivariate leave-h-out cross-validation averaging (MCVAh) criteria (with h denoting the forecast horizon), which are valid for iterative and direct multistep forecast averaging, respectively. Under the framework of stationary VAR processes of infinite order, we provide theoretical justifications by establishing asymptotic unbiasedness and asymptotic optimality of the proposed forecast averaging approaches. Specifically, MMMA exhibits asymptotic optimality for one-step-ahead forecast averaging, whereas for direct multistep forecast averaging, the asymptotically optimal combination weights are determined separately for each forecast horizon based on the MCVAh procedure. To present our methodology, we investigate the finite-sample behavior of the proposed averaging procedures under model misspecification via simulation experiments.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:36:y:2020:i:6:p:1099-1126_4
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().