LOCAL COMPOSITE QUANTILE REGRESSION SMOOTHING: A FLEXIBLE DATA STRUCTURE AND CROSS-VALIDATION
Xiao Huang and
Zhongjian Lin
Econometric Theory, 2021, vol. 37, issue 3, 613-631
Abstract:
In this paper, we study the local composite quantile regression estimator for mixed categorical and continuous data. The local composite quantile estimator is an efficient and safe alternative to the local polynomial method and has been well-studied for continuous covariates. Generalization of the local composite quantile regression estimator to a flexible data structure is appealing to practitioners as empirical studies often encounter categorical data. Furthermore, we study the theoretical properties of the cross-validated bandwidth selection for the local composite quantile estimator. Under mild conditions, we derive the rates of convergence of the cross-validated smoothing parameters to their optimal benchmark values for both categorical and continuous covariates. Monte Carlo experiments show that the proposed estimator may have large efficiency gains compared with the local linear estimator. Furthermore, we illustrate the robustness of the local composite quantile estimator using the Boston housing dataset.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:37:y:2021:i:3:p:613-631_6
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().