EconPapers    
Economics at your fingertips  
 

LARGE SAMPLE PROPERTIES OF BAYESIAN ESTIMATION OF SPATIAL ECONOMETRIC MODELS

Xiaoyi Han, Lung-Fei Lee and Xingbai Xu

Econometric Theory, 2021, vol. 37, issue 4, 708-746

Abstract: This paper studies asymptotic properties of a posterior probability density and Bayesian estimators of spatial econometric models in the classical statistical framework. We focus on the high-order spatial autoregressive model with spatial autoregressive disturbance terms, due to a computational advantage of Bayesian estimation. We also study the asymptotic properties of Bayesian estimation of the spatial autoregressive Tobit model, as an example of nonlinear spatial models. Simulation studies show that even when the sample size is small or moderate, the posterior distribution of parameters is well approximated by a normal distribution, and Bayesian estimators have satisfactory performance, as classical large sample theory predicts.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:37:y:2021:i:4:p:708-746_3

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:37:y:2021:i:4:p:708-746_3