NONSTATIONARY LINEAR PROCESSES WITH INFINITE VARIANCE GARCH ERRORS
Rongmao Zhang and
Ngai Hang Chan
Econometric Theory, 2021, vol. 37, issue 5, 892-925
Abstract:
Recently, Cavaliere, Georgiev, and Taylor (2018, Econometric Theory 34, 302–348) (CGT) considered the augmented Dickey–Fuller (ADF) test for a unit-root model with linear noise driven by i.i.d. infinite variance innovations and showed that ordinary least squares (OLS)-based ADF statistics have the same distribution as in Chan and Tran (1989, Econometric Theory 5, 354–362) for i.i.d. infinite variance noise. They also proposed an interesting question to extend their results to the case with infinite variance GARCH innovations as considered in Zhang, Sin, and Ling (2015, Stochastic Processes and their Applications 125, 482–512). This paper addresses this question. In particular, the limit distributions of the ADF for random walk models with short-memory linear noise driven by infinite variance GARCH innovations are studied. We show that when the tail index $\alpha
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:37:y:2021:i:5:p:892-925_2
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().