ESTIMATION OF VOLATILITY FUNCTIONS IN JUMP DIFFUSIONS USING TRUNCATED BIPOWER INCREMENTS
Jihyun Kim,
Joon Y. Park and
Bin Wang
Econometric Theory, 2021, vol. 37, issue 5, 926-958
Abstract:
In this article, we introduce and analyze a new methodology to estimate the volatility functions of jump diffusion models. Our methodology relies on the standard kernel estimation technique using truncated bipower increments. The relevant asymptotics are fully developed, allowing for the time span to increase as well as the sampling interval to decrease, and accommodate both stationary and nonstationary recurrent processes. We evaluate the performance of our estimators by simulation and provide some illustrative empirical analyses.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:37:y:2021:i:5:p:926-958_3
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().