EconPapers    
Economics at your fingertips  
 

A NONPARAMETRIC TEST OF SIGNIFICANT VARIABLES IN GRADIENTS

Feng Yao and Taining Wang ()

Econometric Theory, 2021, vol. 37, issue 5, 959-1003

Abstract: We propose a nonparametric test of significant variables in the partial derivative of a regression mean function. The derivative is estimated by local polynomial estimation and the test statistic is constructed through a variation-based measure of the derivative in the direction of variables of interest. We establish the asymptotic null distribution of the test statistic and demonstrate that it is consistent. Motivated by the null distribution, we propose a wild bootstrap test, and show that it exhibits the same null distribution, whether the null is valid or not. We perform a Monte Carlo study to demonstrate its encouraging finite sample performance. An empirical application is conducted showing how the test can be applied to infer certain aspects of regression structures in a hedonic price model.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:37:y:2021:i:5:p:959-1003_4

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:37:y:2021:i:5:p:959-1003_4