NONLINEAR PANEL DATA MODELS WITH DISTRIBUTION-FREE CORRELATED RANDOM EFFECTS
Yu-Chin Hsu and
Ji-Liang Shiu
Econometric Theory, 2021, vol. 37, issue 6, 1075-1099
Abstract:
Under a Mundlak-type correlated random effect (CRE) specification, we first show that the average likelihood of a parametric nonlinear panel data model is the convolution of the conditional distribution of the model and the distribution of the unobserved heterogeneity. Hence, the distribution of the unobserved heterogeneity can be recovered by means of a Fourier transformation without imposing a distributional assumption on the CRE specification. We subsequently construct a semiparametric family of average likelihood functions of observables by combining the conditional distribution of the model and the recovered distribution of the unobserved heterogeneity, and show that the parameters in the nonlinear panel data model and in the CRE specification are identifiable. Based on the identification result, we propose a sieve maximum likelihood estimator. Compared with the conventional parametric CRE approaches, the advantage of our method is that it is not subject to misspecification on the distribution of the CRE. Furthermore, we show that the average partial effects are identifiable and extend our results to dynamic nonlinear panel data models.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:37:y:2021:i:6:p:1075-1099_1
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().