LEAST SQUARES ESTIMATION FOR NONLINEAR REGRESSION MODELS WITH HETEROSCEDASTICITY
Qiying Wang
Econometric Theory, 2021, vol. 37, issue 6, 1267-1289
Abstract:
This paper develops an asymptotic theory of nonlinear least squares estimation by establishing a new framework that can be easily applied to various nonlinear regression models with heteroscedasticity. As an illustration, we explore an application of the framework to nonlinear regression models with nonstationarity and heteroscedasticity. In addition to these main results, this paper provides a maximum inequality for a class of martingales, which is of interest in its own right.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:37:y:2021:i:6:p:1267-1289_7
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().